

Roll No. 

**ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)**  
**B.E. - END SEMESTER EXAMINATIONS, NOV/DEC 2021**  
**DEPARTMENT OF MANUFACTURING ENGINEERING**  
**MF7071- ADDITIVE MANUFACTURING TECHNOLOGY**

(Regulation 2015)

Time: 3 hrs

Max. Marks: 100

**PART- A (10 x 2 = 20 Marks)**  
(Answer all Questions)

| Q. No | Questions                                                                           | Marks |
|-------|-------------------------------------------------------------------------------------|-------|
| 1     | Can you classify additive manufacturing techniques? If so, how?                     | 2     |
| 2     | How is additive manufacturing different from traditional manufacturing methods?     | 2     |
| 3     | Name a design tool used in additive manufacturing preparation.                      | 2     |
| 4     | What is the significance of part orientation in additive manufacturing?             | 2     |
| 5     | What is the suitable process to 3D print Titanium? Justify your answer.             | 2     |
| 6     | What is SLA in additive manufacturing, and what materials does it use?              | 2     |
| 7     | Describe briefly the FDM technology in additive manufacturing.                      | 2     |
| 8     | How does LOM differ from FDM in additive manufacturing?                             | 2     |
| 9     | Provide an example of a medical application benefiting from additive manufacturing. | 2     |
| 10    | Can you explain briefly the process of beam deposition in additive manufacturing?   | 2     |

**PART- B (5 x 13 = 65 Marks)**

| Q. No  | Questions                                                                                                                                                                                          | Marks |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11 (a) | Describe the Additive manufacturing process chain and elaborate on each step involved, highlighting how these steps interconnect to produce a final product.                                       | 13    |
| (OR)   |                                                                                                                                                                                                    |       |
| 11 (b) | Present a detailed case study of an Additive Manufacturing project, outlining the problem addressed, the AM technology used, the process followed, and the benefits realized.                      | 13    |
| (OR)   |                                                                                                                                                                                                    |       |
| 12 (a) | Explain how CAD models are prepared for Additive Manufacturing (AM). Discuss why part orientation and support structure generation are crucial in AM, and how they affect the final print quality. | 13    |
| (OR)   |                                                                                                                                                                                                    |       |
| 12 (b) | What is Design for Additive Manufacturing (DFAM)? Describe its goals and how it leverages AM's unique capabilities to enhance part quality. Provide                                                | 13    |

|        |                                                                                                                                                         |    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        | examples of DFAM in medical applications and highlight the benefits of using AM in this field.                                                          |    |
| 13 (a) | Describe SLA photo polymerization, including materials, solidification process, advantages, and common applications in additive manufacturing.          | 13 |
| (OR)   |                                                                                                                                                         |    |
| 13 (b) | Contrast SLS and EBM in additive manufacturing, covering process, materials, parameters, and typical applications.                                      | 13 |
| 14 (a) | Explain FDM's principle, materials, applications, limitations, and Bioextrusion significance.                                                           |    |
| (OR)   |                                                                                                                                                         |    |
| 14 (b) | Compare LOM's gluing and thermal bonding, emphasizing strengths, weaknesses, and application suitability.                                               | 13 |
| 15 (a) | Explain droplet formation technologies, including Continuous and Drop on Demand modes, and discuss 3D printing advantages, materials, and applications. | 13 |
| (OR)   |                                                                                                                                                         |    |
| 15 (b) | Describe Beam Deposition Process, like LENS, covering material delivery, parameters, materials, and applications in manufacturing sectors.              | 13 |

**PART- C (1 x 15 = 15 Marks)**

(Q.No. 16 is Compulsory)

| Q. No  | Questions                                                                                    | Marks |
|--------|----------------------------------------------------------------------------------------------|-------|
| 16 (i) | Explain the various Powder bed fusion mechanisms involved in SLM Process with neat sketches. | 16    |

